
A quick look behind the scenes
In this first chapter, I’d like to start with addressing probably one of the biggest
misconceptions of git as a version control system - its complexity. Whether
you’ve just started out, or have been using it for quite a while, maybe even
years. If we don’t explore what the fundamental building blocks of git are, it’ll
probably always be a bit of a black box and mystery that “kind of works” but
feels rather complex and hard to understand.

Turns out this can be easily fixed. As we explore some of git’s tools throughout
this book, we’ll quickly realise that git is actually just an addressable file system
and that everything we do can be broken down to simple operations. No black
magic, no things that couldn’t be done otherwise by hand (not recommended
though).

Once we have a better understanding of the inner workings, we can be much
more confident and productive in our actions when using git on a daily basis.
Moments where we believe we’ve “messed up” all of a sudden become scenarios
that are extremely easy to solve.

What’s in a repository
Let’s start off by taking a look at what makes a git repository a git repository.
Too keep things simple, we’ll create a new directory:

$ mkdir some-repository
$ cd some-repository

Once this is done we initialize a new repository using git init:

$ git init
Initialized empty Git repository in \
/Users/pascalprecht/some-repository/.git/

At this point, our some-repository directory has a git repository that includes
everything it needs to function. It’s also worth noting, in case you aren’t too
familiar with the git command line tool but prefer using some IDE for devel-
opment, when you create a repository through your IDE, at the end of the day
it will also just run git init. There’s nothing special going on here.

You’ll notice that there’s now a .git directory which, surprise… is the actual
repository. Any action that is related to tracking changes in git, will be recorded
in there. Despite it being actually rather hard to lose work when using git, if
you delete the .git directory, your project’s version history will be gone forever
unless there’s a back up. Luckily, it’s very uncommon for users to accidentally
do that. One of the reasons might be that, at least on Unix systems, every
file or directory starting with a . is considered a hidden file and therefore not
immediately visible to most users.

1

Now is a very good time to look inside that .git directory and see what’s
happening there. Feel free to either list its contents with a tool of your choice, or
use your operating system’s file explorer. I personally prefer the tree command
which can be installed on Linux and macOS using various package managers.

.git
��� HEAD
��� branches
��� config
��� description
��� hooks
� ��� applypatch-msg.sample
� ��� commit-msg.sample
� ��� post-update.sample
� ��� pre-applypatch.sample
� ��� pre-commit.sample
� ��� pre-push.sample
� ��� pre-rebase.sample
� ��� pre-receive.sample
� ��� prepare-commit-msg.sample
� ��� update.sample
��� info
� ��� exclude
��� objects
� ��� info
� ��� pack
��� refs

��� heads
��� tags

9 directories, 14 files

This looks a little bit more overwhelming than it really is. Obviously we can
see a bunch of directories and files. Let’s inspect a few of them:

• HEAD - Probably one of the most important files in a git repository. HEAD
tells git what the currently checked out branch, tag or commit is. If we
inspect its file contents, we’ll should see the following:

ref: refs/heads/master

This means that HEAD is pointing to a reference which is located in
refs/heads/master inside the .git repository. Don’t worry if that
doesn’t make too much sense right now. We’ll play around with this in a
minute.

• config - Just like the name says, this is where git related configurations
are stored. Most of the time we configure git machine-wide, meaning that
there’s a .gitconfig file in the user’s home directory and all configuration

2

values there apply everywhere, unless overwritten by a project specific
configuration.

• objects - This is where our data goes every time we add or commit
changes to the repository. We’ll see in a minute what that looks like in
action.

• refs - References like branches, remote branches and tags are stored
here. As mentioned earlier, our test repository’s HEAD points to a ref-
erence refs/heads/master. You might have noticed that there is no such
file. That’s because there aren’t any commits in the repository yet, but
let’s not get ahead of ourselves.

Alright, now that we have a little bit of a better picture what makes a repository
a repository, let’s quickly talk about some concepts of how they work, so that
shortly after that we can play around with this and discover some interesting
things.

Working directory, index, repository
If you feel comfortable with how git repostories generally work, meaning that
they have a working directory, an index (or “stage”) and the repository itself,
then you can safely skip this section and move on to the next part. If not, you
might want to stick around as these fundamentals are crucial to make sense of
most of the topics discussed in this book. I’ll keep it short and to the point.

When working with git repositories, think of your data going through three
different stages, as illustrated below.

These stages are:

• Working directory - This is basically the root directory of your poject
including the entire file tree of the currentlly checked out commit. If you
check out a different commit, branch or tag, your working tree will change
along with it accordingly. It’s important to realise that any additions,
changes and deletions of files and directories done here that aren’t tracked,
won’t make it into the repository.

• Index - The index, also known as “stage” is where you decide what
changes should go into the next commit. It also keeps track of the changes
between what is stored in the repository (or at least the currently checked
out commit) and the working directory. Every change that should be
committed has to go through the index at some point. This is a very
important characteristic of a git repository as it enables powerful features
and workflows. We’ll come back to those later.

• Repository - As we’ve learned, this is where the actual data goes and all
commits, branches, tags and other things are stored.

When we work in a repository, we always go through the same process:

1. Make changes (working directory)

3

Figure 1: Three stages of a git repository

4

2. Add changes (index)
3. Commit changes (repository)

Figure 2: Typical git workflow

There are surely cases where we checkout different branches, or maybe reset
to different commits, but from that point on, we keep repeating this process.
Notice how there’s no word about actually removing changes or commits. This
is because, even if we want to remove something, we still technically “move
forward” and add changes and commits.

It’s hard to lose work in git and in the next section we discuss one of reasons
why.

Where our data ends up
One thing that a lot of git users aren’t aware of, is that even when changes are
added to the index, but not actually committed yet, git will already store the
corresponding data in the repository.

There’s various technical reasons why this is done. In fact, git wouldn’t be able
to provide certain features and guarantees if it didn’t do it this way. The reason
I’m bringing this up is not to bore you with implementation details that aren’t

5

necessary for you to know, but rather to give you better insights of what git is
doing and, to emphasize the fact that it’s really hard to lose data in git, once
it has been tracked, even if it was only added via git add. Hopefully git is
already starting to get less scary!

We can try this out by creating some file with some arbitrary content:

$ echo "Hello World" >> hello-world

Obviously, running git status will tell us that there’s an untracked file in the
repository:

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in \
what will be committed)

hello-world

nothing added to commit but untracked files \
present (use "git add" to track)

Next we add the hello-world file to the repository’s index using git add and
confirm it by doing another git status:

$ git add hello-world
$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: hello-world

Alright, stop right there. Take another look inside the contents of the .git
directory, specifically in objects:

��� objects
� ��� 80
� � ��� 2992c4220de19a90767f3000a79a31b98d0df7
� ��� info
� ��� pack

Remember that this was empty before? Git has created a directory structure
composed of a hash that represents the hello-world file and its contents. The

6

hash might look different on your machine if you’ve created a file with a dif-
ferent name and content. Git has also created the index in .git/index which,
as mentioned before, tracks changes between the repository and our working
directory.

Let’s go ahead and do what we’d usually do - commit our changes to the repos-
itory:

$ git commit -m "Adds hello-world"
[master (root-commit) a39ee7c] adds hello-world
1 file changed, 1 insertion(+)
create mode 100644 hello-world

The contents of our .git directory, again, look different now:

.git
��� COMMIT_EDITMSG
��� HEAD
��� branches
��� config
��� description
��� hooks
� ��� applypatch-msg.sample
� ��� commit-msg.sample
� ��� post-update.sample
� ��� pre-applypatch.sample
� ��� pre-commit.sample
� ��� pre-push.sample
� ��� pre-rebase.sample
� ��� pre-receive.sample
� ��� prepare-commit-msg.sample
� ��� update.sample
��� index
��� info
� ��� exclude
��� logs
� ��� HEAD
� ��� refs
� ��� heads
� ��� master
��� objects
� ��� 80
� � ��� 2992c4220de19a90767f3000a79a31b98d0df7
� ��� a3
� � ��� 9ee7ccc01b294670a6c11212184d935c970764
� ��� ce
� � ��� bd3f79ac0181ba01d3c8f34a7b859085e3a783
� ��� info

7

� ��� pack
��� refs

��� heads
� ��� master
��� tags

15 directories, 22 files

Most notably, there are now three different directories composed of hashes
80299..., a39ee..., and cebd3f.... At least one of them has a different
hash on your machine, even if you’ve created a file with the same name and
the same contents. There are probably a couple of questions coming up by now.
What are those hashes? Where do they come from and why are there exactly
three of those hashed directories? No worries, all of that will make more sense
when we explore the Anatomy of a git commit in the following chapters.

Another thing that stands out is that, now that we’ve created our first commit,
there’s a new file refs/heads/master, which, if you remember, didn’t exist be-
fore. Reading the contents of that file will give us one of the hashes in objects:

a39ee7ccc01b294670a6c11212184d935c970764

What this means and why this file exists in the first place, will be discussed
deeply in A branch is just a pointer.

What we’ve learned
• Throughout this chapter we’ve explored the inner workings of a git reposi-

tory at least to a degree that we know all of our data, changes and commits
are somehow stored as hashes on the file system.

• We’ve also learned that, even if we don’t create commits but simply add
our changes to the index, git will already store those changes in the same
way, making it rather hard to actually lose work.

With this foundation, we can now take a closer look at the fundamental building
blocks of a git commit and how we end up with those hashes in the first place.
This will give us an even better understanding to pave the way towards branches
and rebasing in general.

Buy the complete book
This was an excerpt of the REBASE book. A complete version can be purchased
at rebase-book.com.

8

https://rebase-book.com

	A quick look behind the scenes
	What's in a repository
	Working directory, index, repository
	Where our data ends up
	What we've learned

	Buy the complete book

